Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO2(111) surfaces.
نویسندگان
چکیده
We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0 × 10(-5) Torr of oxygen at ∼550 °C for 30 min. In order to reduce the CeO2(111) surface, the thin film was annealed under ∼5.0 × 10(-10) Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface. The saturated TMAA coverage on the CeO2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO2-δ(111) surface through dissociative adsorption.
منابع مشابه
Role of oxygen vacancies in the surface evolution of H at CeO2(111): a charge modification effect.
Diffusion processes and reactions of H at stoichiometric and reduced CeO2(111) surfaces have been studied by using density functional theory calculations corrected by on-site Coulomb interactions (DFT + U). Oxygen vacancies on the surface are determined to be able to significantly affect the behavior of H by modifying the charge of surface lattice O through the occurrence of Ce(3+). It has been...
متن کاملWater adsorption on the stoichiometric and reduced CeO2(111) surface: a first-principles investigation.
We present a density functional theory investigation of the interaction between water and cerium oxide surfaces, considering both the stoichiometric and the reduced surfaces. We study the atomic structure and energetics of various configurations of water adsorption (for a water coverage of 0.25 ML) and account for the effect of temperature and pressure of the environment, containing both oxygen...
متن کاملCHx adsorption (x 1⁄4 1–4) and thermodynamic stability on the CeO2(111) surface: a first-principles investigation
We present an ab initio investigation of the interaction betweenmethane, its dehydrogenated forms and the cerium oxide surface. In particular, the stoichiometric CeO2(111) surface and the one with oxygen vacancies are considered. We study the geometries, energetics and electronic structures of various configurations of these molecules adsorbed on the surface in vacuum, and we extend the analysi...
متن کاملChemical activity of oxygen vacancies on ceria: a combined experimental and theoretical study on CeO2(111).
The chemical activity of oxygen vacancies on well-defined, single-crystal CeO2(111)-surfaces is investigated using CO as a probe molecule. Since no previous measurements are available, the assignment of the CO ν1 stretch frequency as determined by IR-spectroscopy for the stoichiometric and defective surfaces are aided by ab initio electronic structure calculations using density functional theor...
متن کاملFirst-Principles Study of CO Adsorption and Oxidation on Ru-Doped CeO2(111) Surface
The interaction and mechanism for CO oxidation on a Ru-modified CeO2 surface have been investigated by using periodic density functional theory calculations corrected with the on-site Coulomb interaction via a Hubbard term (DFT + U). Our calculations showed that (i) the Ru dopant facilitates oxygen vacancy formation, while the Ru adatoms may suppress oxygen vacancy formation. (ii) Physisorbed C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 23 شماره
صفحات -
تاریخ انتشار 2016